
A Profiling Tool for exploiting the use of Packed Objects in

JAVA Programs

Packed Objects
Packed objects1 can be used to gain greater control over the layout of
objects in memory. Applications which uses packed objects have
greater flexibility when they work with memory structures that are not in
Java code.

Project Goal
• The purpose of developing this profiling tool is to assist software

developers in determining how much performance gain can be
achieved if they switch to packed objects from standard Java objects

• This switch can result in reduced memory consumption by the
application

• If the application is accessing a lot of native data using JNI method
calls, then use of the packed objects will eliminate
marshaling/unmarshaling of native data into Java objects and thus
eliminating redundant data copying

After analyzing the Packed Object Data Model, our Profiling Tool will be
searching for following four cases in a Java program.

Primitive data type fields: In the packed object data model, fields of
primitive data type, such as byte, char, boolean and short, occupy the
minimum amount of space as necessary. This is more efficient
especially when compared to an implementation where all primitive data
types are stored in either 32-bits (for byte, short, int, float, char and
boolean data types) or 64-bits (for long and double data types).

The packed objects data model can be useful, especially when there
are multiple fields of small primitive data types.

Reference type objects: If a packed object contains one or more
instance fields of packed type then these fields are embedded within the
object. Which is in contrast to the generic Java data model where if an
object contains a filed of either a primitive or non-primitive data type,
then the filed contains a reference to the actual data value or null.

1Packed objects is an experimental feature in IBM J9 Virtual Machine

The advantage of this property of packed objects is that nested packed
fields of a packed object reside next to each other in the memory, which
improves cache locality and results in faster data access and also it
reduces the overhead associated with arrays.

Arrays: The elements of an array of packed objects are embedded within
the array, which is in contrast to a standard Java array of objects, where
elements are references which point to the actual values. This results in
less overhead and improved object locality.

 Data: 80 bytes

 Overhead: 88 bytes

 Data: 80 bytes

 Overhead: 8 bytes

This approach results in significant reduction in memory consumption
especially if the application uses large arrays or a large number of
smaller arrays.

Off-heap packed objects: We can create a packed object in native
memory outside the Java heap and these objects are known as off-heap
packed objects. These objects are very small and they mainly consists
of a pointer to actual data which lies in the native memory.

Umang Pandya, Karl Taylor, Prof Dr. Eric Aubanel and

Prof Dr. Kenneth Kent
University of New Brunswick, IBM Canada

Faculty of Computer Science

umang.pandya@unb.ca, Karl_Taylor@ca.ibm.com, aubanel@unb.ca, ken@unb.ca

Layout of a reference
type object in
Standard Java

Layout of a reference
type object in

Packed objects

Layout of an object
with three byte fields

Packed objects layout
of the same object

